Exact tensor closures for the three dimensional Jeffery ’ s equation
نویسندگان
چکیده
This paper presents an exact formula for calculating the fourth-moment tensor from the second-moment tensor for the three dimensional Jeffery’s equation. Although this approach falls within the category of a moment tensor closure, it does not rely upon an approximation, either analytic or curve fit, of the fourth-moment tensor as do previous closures. This closure is orthotropic in the sense of Cintra, J. S. & Tucker (1995), or equivalently, a natural closure in the sense of Verleye, V. & Dupret (1993). The existence of these explicit formulae has been asserted previously, but as far as the authors know, the explicit forms have yet to be published. The formulae involve elliptic integrals, and are valid whenever fiber orientation was isotropic at some point in time. Finally, this paper presents the Fast Exact Closure (FEC), a fast and in principle exact method for solving Jeffery’s equation, which does not require approximate closures, nor the elliptic integral computation.
منابع مشابه
Exact solutions of (3 +1)-dimensional nonlinear evolution equations
In this paper, the kudryashov method has been used for finding the general exact solutions of nonlinear evolution equations that namely the (3 + 1)-dimensional Jimbo-Miwa equation and the (3 + 1)-dimensional potential YTSF equation, when the simplest equation is the equation of Riccati.
متن کاملMulti-soliton of the (2+1)-dimensional Calogero-Bogoyavlenskii-Schiff equation and KdV equation
A direct rational exponential scheme is offered to construct exact multi-soliton solutions of nonlinear partial differential equation. We have considered the Calogero–Bogoyavlenskii–Schiff equation and KdV equation as two concrete examples to show efficiency of the method. As a result, one wave, two wave and three wave soliton solutions are obtained. Corresponding potential energy of the solito...
متن کاملSome new exact traveling wave solutions one dimensional modified complex Ginzburg- Landau equation
In this paper, we obtain exact solutions involving parameters of some nonlinear PDEs in mathmatical physics; namely the one-dimensional modified complex Ginzburg-Landau equation by using the $ (G'/G) $ expansion method, homogeneous balance method, extended F-expansion method. By using homogeneous balance principle and the extended F-expansion, more periodic wave solutions expressed by j...
متن کاملAn Implicit Difference-ADI Method for the Two-dimensional Space-time Fractional Diffusion Equation
Fractional order diffusion equations are generalizations of classical diffusion equations which are used to model in physics, finance, engineering, etc. In this paper we present an implicit difference approximation by using the alternating directions implicit (ADI) approach to solve the two-dimensional space-time fractional diffusion equation (2DSTFDE) on a finite domain. Consistency, unconditi...
متن کاملOn three-dimensional $N(k)$-paracontact metric manifolds and Ricci solitons
The aim of this paper is to characterize $3$-dimensional $N(k)$-paracontact metric manifolds satisfying certain curvature conditions. We prove that a $3$-dimensional $N(k)$-paracontact metric manifold $M$ admits a Ricci soliton whose potential vector field is the Reeb vector field $xi$ if and only if the manifold is a paraSasaki-Einstein manifold. Several consequences of this result are discuss...
متن کامل